MS.Earth's Systems

MS.Earth's Systems

Students who demonstrate understanding can:

MS-ESS2-1. Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]
MS-ESS2-4. Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. [Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]
MS-ESS3-1. Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. [Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Disciplinary Core Ideas

ESS2.A: Earth’s Materials and Systems

ESS2.C: The Roles of Water in Earth's Surface Processes

ESS3.A: Natural Resources

Crosscutting Concepts

Cause and Effect

Energy and Matter

Stability and Change

Connections to other DCIs in this grade band:

MS.PS1.A (MS-ESS2-1),(MS-ESS2-4),(MS-ESS3-1); MS.PS1.B (MS-ESS2-1),(MS-ESS3-1); MS.PS2.B (MS-ESS2-4); MS.PS3.A (MS-ESS2-4); MS.PS3.B (MS-ESS2-1); MS.PS3.D (MS-ESS2-4); MS.LS2.B (MS-ESS2-1); MS.LS2.C (MS-ESS2-1); MS.ESS1.B (MS-ESS2-1); MS.ESS2.D (MS-ESS3-1); MS.ESS3.C (MS-ESS2-1)

Articulation of DCIs across grade-bands:

3.PS2.A (MS-ESS2-4); 4.PS3.B (MS-ESS2-1),(MS-ESS2-4); 4.PS3.D (MS-ESS3-1); 4.ESS2.A (MS-ESS2-1); 4.ESS3.A (MS-ESS3-1); 5.PS2.B (MS-ESS2-4); 5.ESS2.A (MS-ESS2-1); 5.ESS2.C (MS-ESS2-4); HS.PS1.B (MS-ESS2-1); HS.PS2.B (MS-ESS2-4); HS.PS3.B (MS-ESS2-1),(MS-ESS2-4),(MS-ESS3-1); HS.PS4.B (MS-ESS2-4); HS.LS1.C (MS-ESS2-1),(MS-ESS3-1); HS.LS2.B (MS-ESS2-1); HS.ESS2.A (MS-ESS2-1),(MS-ESS2-2),(MS-ESS3-1); HS.ESS2.B (MS-ESS3-1); HS.ESS2.C (MS-ESS2-1),(MS-ESS2-4),(MS-ESS3-1); HS.ESS2.D (MS-ESS2-4); HS.ESS2.E (MS-ESS2-1); HS.ESS3.A (MS-ESS3-1)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS3-1)
WHST.6-8.2Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-ESS3-1)
WHST.6-8.9Draw evidence from informational texts to support analysis, reflection, and research. (MS-ESS3-1)
SL.8.5Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ESS2-1)
Mathematics -
6.EE.B.6Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS3-1)
7.EE.B.4Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS3-1)

MS.Earth's Systems

Students who demonstrate understanding can:

MS-ESS2-1. Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]
MS-ESS2-4. Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. [Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]
MS-ESS3-1. Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. [Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Disciplinary Core Ideas

ESS2.A: Earth’s Materials and Systems

ESS2.C: The Roles of Water in Earth's Surface Processes

ESS3.A: Natural Resources

Crosscutting Concepts

Cause and Effect

Energy and Matter

Stability and Change

Connections to other DCIs in this grade band:

MS.PS1.A (MS-ESS2-1),(MS-ESS2-4),(MS-ESS3-1); MS.PS1.B (MS-ESS2-1),(MS-ESS3-1); MS.PS2.B (MS-ESS2-4); MS.PS3.A (MS-ESS2-4); MS.PS3.B (MS-ESS2-1); MS.PS3.D (MS-ESS2-4); MS.LS2.B (MS-ESS2-1); MS.LS2.C (MS-ESS2-1); MS.ESS1.B (MS-ESS2-1); MS.ESS2.D (MS-ESS3-1); MS.ESS3.C (MS-ESS2-1)

Articulation of DCIs across grade-bands:

3.PS2.A (MS-ESS2-4); 4.PS3.B (MS-ESS2-1),(MS-ESS2-4); 4.PS3.D (MS-ESS3-1); 4.ESS2.A (MS-ESS2-1); 4.ESS3.A (MS-ESS3-1); 5.PS2.B (MS-ESS2-4); 5.ESS2.A (MS-ESS2-1); 5.ESS2.C (MS-ESS2-4); HS.PS1.B (MS-ESS2-1); HS.PS2.B (MS-ESS2-4); HS.PS3.B (MS-ESS2-1),(MS-ESS2-4),(MS-ESS3-1); HS.PS4.B (MS-ESS2-4); HS.LS1.C (MS-ESS2-1),(MS-ESS3-1); HS.LS2.B (MS-ESS2-1); HS.ESS2.A (MS-ESS2-1),(MS-ESS2-2),(MS-ESS3-1); HS.ESS2.B (MS-ESS3-1); HS.ESS2.C (MS-ESS2-1),(MS-ESS2-4),(MS-ESS3-1); HS.ESS2.D (MS-ESS2-4); HS.ESS2.E (MS-ESS2-1); HS.ESS3.A (MS-ESS3-1)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS3-1)
WHST.6-8.2Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-ESS3-1)
WHST.6-8.9Draw evidence from informational texts to support analysis, reflection, and research. (MS-ESS3-1)
SL.8.5Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ESS2-1)
Mathematics -
6.EE.B.6Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS3-1)
7.EE.B.4Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS3-1)

MS.Earth's Systems

Students who demonstrate understanding can:

MS-ESS2-1. Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]
MS-ESS2-4. Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. [Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]
MS-ESS3-1. Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. [Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Disciplinary Core Ideas

ESS2.A: Earth’s Materials and Systems

ESS2.C: The Roles of Water in Earth's Surface Processes

ESS3.A: Natural Resources

Crosscutting Concepts

Cause and Effect

Energy and Matter

Stability and Change

Connections to other DCIs in this grade band:

MS.PS1.A (MS-ESS2-1),(MS-ESS2-4),(MS-ESS3-1); MS.PS1.B (MS-ESS2-1),(MS-ESS3-1); MS.PS2.B (MS-ESS2-4); MS.PS3.A (MS-ESS2-4); MS.PS3.B (MS-ESS2-1); MS.PS3.D (MS-ESS2-4); MS.LS2.B (MS-ESS2-1); MS.LS2.C (MS-ESS2-1); MS.ESS1.B (MS-ESS2-1); MS.ESS2.D (MS-ESS3-1); MS.ESS3.C (MS-ESS2-1)

Articulation of DCIs across grade-bands:

3.PS2.A (MS-ESS2-4); 4.PS3.B (MS-ESS2-1),(MS-ESS2-4); 4.PS3.D (MS-ESS3-1); 4.ESS2.A (MS-ESS2-1); 4.ESS3.A (MS-ESS3-1); 5.PS2.B (MS-ESS2-4); 5.ESS2.A (MS-ESS2-1); 5.ESS2.C (MS-ESS2-4); HS.PS1.B (MS-ESS2-1); HS.PS2.B (MS-ESS2-4); HS.PS3.B (MS-ESS2-1),(MS-ESS2-4),(MS-ESS3-1); HS.PS4.B (MS-ESS2-4); HS.LS1.C (MS-ESS2-1),(MS-ESS3-1); HS.LS2.B (MS-ESS2-1); HS.ESS2.A (MS-ESS2-1),(MS-ESS2-2),(MS-ESS3-1); HS.ESS2.B (MS-ESS3-1); HS.ESS2.C (MS-ESS2-1),(MS-ESS2-4),(MS-ESS3-1); HS.ESS2.D (MS-ESS2-4); HS.ESS2.E (MS-ESS2-1); HS.ESS3.A (MS-ESS3-1)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS3-1)
WHST.6-8.2Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-ESS3-1)
WHST.6-8.9Draw evidence from informational texts to support analysis, reflection, and research. (MS-ESS3-1)
SL.8.5Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ESS2-1)
Mathematics -
6.EE.B.6Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS3-1)
7.EE.B.4Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS3-1)

* The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.