

K-2-ETS1-1 **Engineering Design**

Students who demonstrate understanding can:

K-2-Ask questions, make observations, and gather information about a situation people want to ETS1-1. change to define a simple problem that can be solved through the development of a new or improved object or tool.

The performance expectation above was developed usin	g the following elements from the NRC document A	Framework for K-12 Science Education:
 Science and Engineering Practices Asking Questions and Defining Problems Asking questions and defining problems in K–2 builds on prior experiences and progresses to simple descriptive questions. Ask questions based on observations to find more information about the natural and/or designed world(s). Define a simple problem that can be solved through the development of a new or improved object or tool. 	 Disciplinary Core Ideas ETS1.A: Defining and Delimiting Engineering Problems A situation that people want to change or create can be approached as a problem to be solved through engineering. Asking questions, making observations, and gathering information are helpful in thinking about problems. Before beginning to design a solution, it is important to clearly understand the problem. 	Crosscutting Concepts

Obs	serva	ble features of the student performance by the end of the grade:		
1	Add	Addressing phenomena of the natural or designed world		
	а	Students ask questions and make observations to gather information about a situation that people		
		want to change. Students' questions, observations, and information gathering are focused on:		
		i. A given situation that people wish to change.		
		ii. Why people want the situation to change.		
		iii. The desired outcome of changing the situation.		
2	Iden	tifying the scientific nature of the question		
	а	Students' questions are based on observations and information gathered about scientific		
		phenomena that are important to the situation.		
3	Iden	entifying the problem to be solved		
	а	Students use the information they have gathered, including the answers to their questions,		
		observations they have made, and scientific information, to describe* the situation people want to		
		change in terms of a simple problem that can be solved with the development of a new or		
		improved object or tool.		
4	Defi	efining the features of the solution		
	а	With guidance, students describe* the desired features of the tool or object that would solve the		
		problem, based on scientific information, materials available, and potential related benefits to		
		people and other living things.		

K-2-ETS1-2 Engineering Design

Students who demonstrate understanding can:

K-2- Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:		
The performance expectation above was developed using Science and Engineering Practices Developing and Using Models Modeling in K-2 builds on prior experiences and progresses to include using and developing reduction of the using and	 g the following elements from the NRC documer Disciplinary Core Ideas ETS1.B: Developing Possible Solutions Designs can be conveyed 	A Framework for K-12 Science Education: Crosscutting Concepts Structure and Function The shape and stability of structures of natural and
 developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions. Develop a simple model based on evidence to represent a proposed object or tool. 	through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem's solutions to other people.	designed objects are related to their function(s).

Obs	serva	ble features of the student performance by the end of the grade:		
1	Com	mponents of the model		
	а	Students develop a representation of an object and the problem it is intended to solve. In their		
		representation, students include the following components:		
		i. The object.		
		ii. The relevant shape(s) of the object.		
		iii. The function of the object.		
	b	Students use sketches, drawings, or physical models to convey their representations.		
2	Rela	ationships		
	а	Students identify relationships between the components in their representation, including:		
		i. The shape(s) of the object and the object's function.		
		ii. The object and the problem is it designed to solve.		
3	Con	nnections		
	а	3 Students use their representation (simple sketch, drawing, or physical model) to communicate the		
		connections between the shape(s) of an object, and how the object could solve the problem.		

K-2-ETS1-3 Engineering Design

Students who demonstrate understanding can:

K-2-Analyze data from tests of two objects designed to solve the same problem to compare the strengths ETS1-3. and weaknesses of how each performs.

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:		
Science and Engineering Practices	Disciplingry Core Ideas	Crossoutting Concepts
Science and Engineering Practices	Disciplinary Core ideas	Crosscutting Concepts
Analyzing and Interpreting Data	ETS1.C: Optimizing the Design	
Analyzing data in K-2 builds on prior	Solution	
experiences and progresses to collecting,	Because there is always more than	
recording, and sharing observations.	one possible solution to a problem,	
A national data formation of an ablant anti-	it is useful to compare and test	

- Analyze data from tests of an object or tool to determine if it works as intended.
- it is useful to compare and test designs.

Ob	serv	able features of the student performance by the end of the grade:		
1	Org	rganizing data		
	а	With guidance, students use graphical displays (e.g., tables, pictographs, line plots) to organize		
		given data from tests of two objects, including data about the features and relative performance of		
		each solution.		
2	Ider	entifying relationships		
	а	Students use their organization of the data to find patterns in the data, including:		
		i. How each of the objects performed, relative to:		
		1. The other object.		
		2. The intended performance.		
		ii. How various features (e.g., shape, thickness) of the objects relate to their performance (e.g.,		
		speed, strength).		
3	Inte	rpreting data		
	а	Students use the patterns they found in object performance to describe*:		
		i. The way (e.g., physical process, qualities of the solution) each object will solve the problem.		
		ii. The strengths and weaknesses of each design.		
		iii. Which object is better suited to the desired function, if both solve the problem.		

3-5-ETS1-1 Engineering Design

Students who demonstrate understanding can:

3-5-ETS1- Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

The performance expectation above was developed using	g the following elements from the NRC document	A Framework for K- 12 Science Education:
 Science and Engineering Practices Asking Questions and Defining Problems Asking questions and defining problems in 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships. Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost. 	 Disciplinary Core Ideas ETS1.A: Defining and Delimiting Engineering Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. 	Crosscutting Concepts Influence of Science, Engineering, and Technology on Society and the Natural World • People's needs and wants change over time, as do their demands for new and improved technologies.

Obs	servable	features of the student performance by the end of the grade:		
1	Identifying the problem to be solved			
	а	Students use given scientific information and information about a situation or phenomenon to		
		define a simple design problem that includes responding to a need or want.		
	b	The problem students define is one that can be solved with the development of a new or		
	improved object, tool, process, or system.			
	С	Students describe* that people's needs and wants change over time.		
2	Defining	Defining the boundaries of the system		
	а	Students define the limits within which the problem will be addressed, which includes		
		addressing something people want and need at the current time.		
3	Defining	Defining the criteria and constraints		
	а	Based on the situation people want to change, students specify criteria (required features) of a		
		successful solution.		
	b	Students describe* the constraints or limitations on their design, which may include:		
		i. Cost.		
		ii. Materials.		
		iii. Time.		

3-5-ETS1-2 Engineering Design

Students who demonstrate understanding can:

3-5-ETS1- Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

The performance expectation above was developed using the following elements from the NRC document A Framework for K- 12 Science Education:		
 Science and Engineering Practices Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems. Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem. 	 Disciplinary Core Ideas ETS1.B: Developing Possible Solutions Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. 	Crosscutting Concepts Influence of Science, Engineering, and Technology on Society and the Natural World • Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands.

Obs	serva	able features of the student performance by the end of the grade:		
1	Usir	ng scientific knowledge to generate design solutions		
	а	a Students use grade-appropriate information from research about a given problem, including the		
	causes and effects of the problem and relevant scientific information.			
	b	Students generate at least two possible solutions to the problem based on scientific information		
		and understanding of the problem.		
	С	Students specify how each design solution solves the problem.		
	d	Students share ideas and findings with others about design solutions to generate a variety of		
		possible solutions.		
	е	Students describe* the necessary steps for designing a solution to a problem, including conducting		
		research and communicating with others throughout the design process to improve the design		
		[note: emphasis is on what is necessary for designing solutions, not on a ston-wise process]		
		[note: emphasis is on what is necessary for designing solutions, not of a step-wise process].		
2	Des	cribing* criteria and constraints, including quantification when appropriate		
2	Des a	cribing* criteria and constraints, including quantification when appropriate Students describe*:		
2	Des a	cribing* criteria and constraints, including quantification when appropriate Students describe*: i. The given criteria (required features) and constraints (limits) for the solutions, including		
2	Des a	 cribing* criteria and constraints, including quantification when appropriate Students describe*: The given criteria (required features) and constraints (limits) for the solutions, including increasing benefits, decreasing risks/costs, and meeting societal demands as appropriate. 		
2	Des a	 cribing* criteria and constraints, including quantification when appropriate Students describe*: The given criteria (required features) and constraints (limits) for the solutions, including increasing benefits, decreasing risks/costs, and meeting societal demands as appropriate. How the criteria and constraints will be used to generate and test the design solutions. 		
2	Des a Eva	 i. The given criteria (required features) and constraints (limits) for the solutions, including increasing benefits, decreasing risks/costs, and meeting societal demands as appropriate. ii. How the criteria and constraints will be used to generate and test the design solutions. 		
2	Des a Eva a	 cribing* criteria and constraints, including quantification when appropriate Students describe*: i. The given criteria (required features) and constraints (limits) for the solutions, including increasing benefits, decreasing risks/costs, and meeting societal demands as appropriate. ii. How the criteria and constraints will be used to generate and test the design solutions. Industry potential solutions Students test each solution under a range of likely conditions and gather data to determine how 		
2 3	Des a Eva a	 cribing* criteria and constraints, including quantification when appropriate Students describe*: i. The given criteria (required features) and constraints (limits) for the solutions, including increasing benefits, decreasing risks/costs, and meeting societal demands as appropriate. ii. How the criteria and constraints will be used to generate and test the design solutions. luating potential solutions Students test each solution under a range of likely conditions and gather data to determine how well the solutions meet the criteria and constraints of the problem. 		
2 3	Des a Eva a b	 cribing* criteria and constraints, including quantification when appropriate Students describe*: i. The given criteria (required features) and constraints (limits) for the solutions, including increasing benefits, decreasing risks/costs, and meeting societal demands as appropriate. ii. How the criteria and constraints will be used to generate and test the design solutions. luating potential solutions Students test each solution under a range of likely conditions and gather data to determine how well the solutions meet the criteria and constraints of the problem. Students use the collected data to compare solutions based on how well each solution meets the 		

3-5-ETS1-3 Engineering Design

Students who demonstrate understanding can:

3-5-ETS1- Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

The performance expectation above was developed usin	g the following elements from the NRC document A F	ramework for K- 12 Science Education:
 Science and Engineering Practices Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions. Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. 	 Disciplinary Core Ideas ETS1.B: Developing Possible Solutions Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. 	Crosscutting Concepts

Obs	serva	ble features of the student performance by the end of the grade:		
1	Iden	ntifying the purpose of the investigation		
	а	Students describe* the purpose of the investigation, which includes finding possible failure points		
		or difficulties to identify aspects of a model or prototype that can be improved.		
2	Iden	tifying the evidence to be address the purpose of the investigation		
	а	Students describe* the evidence to be collected, including:		
		i. How well the model/prototype performs against the given criteria and constraints.		
		ii. Specific aspects of the prototype or model that do not meet one or more of the criteria or		
		constraints (i.e., failure points or difficulties).		
		iii. Aspects of the model/prototype that can be improved to better meet the criteria and		
		constraints.		
	b	Students describe* how the evidence is relevant to the purpose of the investigation.		
3	Plan	ning the investigation		
	а	Students create a plan for the investigation that describes* different tests for each aspect of the		
		criteria and constraints. For each aspect, students describe*:		
		i. The specific criterion or constraint to be used.		
		ii. What is to be changed in each trial (the independent variable).		
		iii. The outcome (dependent variable) that will be measured to determine success.		
		iv. What tools and methods are to be used for collecting data.		
		v. What is to be kept the same from trial to trial to ensure a fair test.		
4	Colle	ecting the data		
	а	Students carry out the investigation, collecting and recording data according to the developed plan.		